AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM D-3080**: Standard test method for direct shear test of soils under consolidated drained conditions. 1998.

AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM D-5321**: Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method. 1998.

AGUIAR, V. R. Ensaios de Rampa para o Estudo da Resistência de Interfaces Solo-Geossintético. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2003

ALFARO, M. C.; MIURA, N.; BERGADO, D. T. Soil-geogrid reinforcement interaction by pullout and direct shear tests. **Geothecnical Testing Journal**., vol.18 (2), p. 157-167, 1995

ANDRIOTTI, J.L.S. **Fundamentos de Estatística e Geoestatística,** São Leopoldo, Ed. Unisinos, 2003, 413p.

ATHANASAPOULOS, G. A. Effect of particle size on the mechanical behavior of sand-geotextile composities. **Geotextiles and Geomembranes**. Local, vol. 12, p. 255-273. 1993

BECKER, L. B. Comportamento de geogrelhas em muro de solo reforçado e em ensaios de arrancamento. Tese de Doutorado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 2006.

BOMFIM, R. B. Avaliação da Tensão lateral de Campo de Argilas Sobreadensadas: Ensaios de Laboratório com um Solo da Formação **Guabirotuba**. Dissertação de Mestrado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 2001.

BRIANÇON, L., GIRARD, H., POULAIN, D. (2002) Slope stability of lining systems-experimental modeling of frictional at geosynthetic interfaces. **Geotextiles and Geomembranes**. V. 13 (5), p. 147-172.

CASTRO, D. C. Ensaios de Arrancamento de Geogrelhas no Campo e no Laboratório. 135p. Dissertação de Mestrado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 1999.

CHRISTOPHER, B. R.; GILL, S. A.; GIROUD, J. P.; JURAN, I., MITCHELL, J. K.;SCHLOSSER, F.; DUNNICLIFF, J. **Reinforced soil structures**. U.S. Departament of Transportation, publication n° FHWA-RD-89-043, 1990.

CIPATEX. Especificações Tecnicas da Geomembrana Cipageo, 2003.

DEMBICKI, E., JERMOLOWICZ, P.; Soil-Geotextiles Interaction. Geotextiles and Geomembranes, v. 10, pp. 249-268, 1990.

Deutsche Norm. DIN EN 963. geotextiles and geotextiles-related products: Sampling and preparation of test specimens, 1995.

ENGEPOL. Especificações Tecnicas da Geomembrana Polimenta, 2007

FANNIN, R. J., e RAJU, D. M. On the Pullout Resistance of Geosynthetics. **Canadian Geotechnical Journal**, v. 30, pp. 409-417. 1993.

FARRAG, K., ACAR, Y.B. e JURAN, I. (1993) Pullout Resistance of Geogrids Reinforcements. Geotextiles and Geomembranes, v. 12, pp. 133-159.

GIRARD, H., FISHER, S.; ALONSO, E. Problems of Friction Posed by Use of Geomembranes on Dam Slopes-Examples and Measurements. **Geotextiles and Geomembranes**, v. 9, pp. 339-342, 1990.

GIROUD, J.P., SWAN, R.H., RICHER, P.J. e SPOONER, P.R. Geosynthetic Landfill Cap: Laboratory and Field Tests, design and Construction. In: INTERNATIONAL CONFERENCE ON GEOSYNTHETICS (EUROGEO 1), 4 1990, Maastricht. **Proceedings...** Maastricht (Netherlands), 1990, v. 2, pp. 1039- 1046.

GOMES, R. C. Interação Solo-Reforço e Mecanismo de Ruptura em Solos Reforçados com Geotêxteis. São Paulo,. Tese de Doutorado. Universidade de São Paulo, São Carlos, 1993.

GOURC, J. P.; LALARAKOTOSON, S.; MÜLLER-ROCHHOLTZ, H.; BRONSTEIN, Z. Friction measurement by direct shearing or tilting process – **Development of a european standard, geosynthetics: applications, design and construction**. Edition of De Groot, Den Hoedt e Termaat, Balkema, Rotterdam, 1996, pp. 1039-1046.

HSIEH, C.; HSIEH, M.H.; CHEN, J. (2002) – Direct shear behavior of sand geomembrane systems for various shear boxes – Geosynthetics – 7th ICG – Delmas, Gourc & Girard – Nice – França.

HUESKER. Especificações Tecnicas da Geogrelha Fortrac, 2002.

HUESKER. Especificações Tecnicas da Geogrelha Fortrac, 2003. INGOLD, T.S. **A Laboratory investigation of soil-geotextiles friction**, Ground Engineering,pp. 21-28. 1984.

INGOLD, T.S. **A Laboratory Simulation of Reinforced Clay Walls**. Geothecnique, v.31, pp. 399-412. 1981.

INGOLD, T.S. (1990) – Friction Testing – **Geomembranes: identification and performance testing** – edited by A. Rollin and J.M. Rigo. INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. **ISO 12957-2** Geotextiles and Geotextiles Related Products: Determination of Friction Characteristics (1 e 2). Genebra, 1999.

IZGIN, M. Geomembrane-sand interface friction. Dissertação de Mestrado. Middle East Technical Universal, Ankara, Turkey, 1997

IZGIN, M. e WASTI, Y.(1998) Geomembrane-Sand Interface Frictional Properties as Determined by Inclined Board and Shear Box Tests. **Geotextiles and Geomembranes**, v. 16, pp.207-219,

JEWELL, R. A. **Some effects of reinforcement on mechanical behavior of soils**. Cambridge, 1980. Tese de Doutorado – Imperial College, Cambridge University.

JEWELL, R. A. Reinforcement Bond Capacity. **Geotechnique**, v.40, n.3, pp. 513-518.1990.

JEWELL, R. A.; WROTH, C.P. Direct Shear Test On Reinforced Sand. **Geotechnique**, v. 37, pp. 53-68. 1987.

JURAN, I.; KNOCHENMUS, G., ACAR, Y.B. E ARMAN, A. Pull Response of Geotextiles and geogrids. In: SYMPOSIUM. ON GEOSYNTHETICS FOR SOIL IMPROVEMENT, 18, 1988, Nashville. **Proceedings**... Nashville: Geotechnical Special Publication, 1988, pp. 92-111.

KOERNER, R. Desining with Geosynthetics. Prentice Hall, 1986.

KOERNER, R. M., Emerging and Future Developments of Selected Geosynthetic Applications, **Journal of Geotechnical and Geoenvironmental Engeneering**, pp.293-306. 2000.

KOUTSOURAIS M., SANDRI, D., SWAN, R. (1998) Soil Interaction Characteristics of Geotextiles and Geogrids. **Six International Conference on Geosynthetics,** pp. 739-744. LALARAKOTOSON, S; VILLARD, P.; GOURC, J.P. Shear Strength Characterization of Geosynthetic Interfaces on Inclined Planes. **Geotechnical Testing Journal**, 1999, Vol 22, N4, pp.284-291.

LEE, K.M.; MANJUNATH, V.R.(2000). Soil-geotextiles interface friction by direct shear tests, **Canadian Geotechnical Journal**, v. 37, pp. 238-252.

LIMA JÚNIOR, N.R. Estudo da Aderência entre Solos e Geossintéticos em Ensaios de Rampa de Grandes Dimensões. Dissertação de Mestrado, Universidade de Brasília, Brasília, 2000.

LOPES, C.P.F.C. Estudo da Interação Solo-Geossintético Através de Ensaios de Corte em Plano Inclinado. 186p. Dissertação de Mestrado, Faculdade de Engenharia da Universidade do Porto, Porto, 2000.

LOPES, M.L ; LADEIRA, M. (1996) Influence of the Confinement, Soil Density and displacement Ratio on Soil – Geogrid Interaction. **Geotextiles and Geomembranes**, v. 14, n.10, pp. 543-554.

LOPES, M.L.; MOUTINHO, C. Resistência das Interfaces Solo-Geogrelha: Papel da Densidade e da Granulometria do Solo. In: CONGRESSOS NACIONAIS DE GEOTECNIA, 6, 1997, Lisboa. **Proceedings...** Lisboa, v. 1, 1997, pp. 279-288.

MELLO, L.G.R. Estudo da Interação Solo-Geossintético em Taludes de Obras de Disposição de Resíduos. 130p. Dissertação de Mestrado, Universidade de Brasília. Brasília, 2001.

MELO, L.G.R., LIMA Jr., N.R., PALMEIRA, E.M. (2003) Estudo da Interação entre Interfaces de Solo e Geossintético em Taludes de Áreas de Disposição de Resíduos. **Solos e Rochas**, V.26 (1), pp.19-35

NAREJO, D.B. (2003) A simple tilt table device to measure index frictional angle of geosynthetics. **Geotextiles and Geomembranes**. V.21, pp.49-57.

NAKAMURA, T., e MITACHI, T. e IKEURA, I. (1999) Direct Shear Test Method as a means for estimating geogrid-sand interface sheardisplacement behavior. **Soils and Foundations**, V.39 (4), pp.1-8.

PALMEIRA, E. M. The study of soil-reinforcement interaction by means of large scale laboratory tests., 238f. Tese de Doutorado. Magdalen College, University of Oxford, Oxford, 1987.

PALMEIRA, E.M. Execução e interpretação de ensaios de laboratório em geossintéticos. In: SIMPÓSIO SUL-AMERICANO DE GEOSSINTÉTICOS,
1. 1999, Rio de Janeiro. Anais... Rio de Janeiro: 1999, pp. 87-108.

PALMEIRA, E.M., MILLIGAN, G. W. E.(1989) Large scale laboratory tests on reinforced sand, **Journal Soils and Foundations**. Japanese Geotechnical Society, vol. 36, n. 29, p. 18-30,

PALMEIRA, E.M. LIMA JR, N.R. & MELLO, L.G.R. (2002). Interaction between soils and geosynthetics layers in large scale ramp test. Geosynthetics International 9 (2), IFAI, USA, 149-187.

PITANGA, H.N.; GOURC. J.P.; ... Derivação do ângulo de Atrito Residual de InterfacesGeossintéticas Mediante Emprego do Equipamento Plano Inclinado. In: SIMPÓSIO SUL-AMERICANO DE GEOSSINTÉTICOS, 1. 2007, Recife. **Anais...** Pernambuco: 2007.

REZENDE, E. S. Estudo da Resistência de Interfaces Solo-Geossintético Utilizando o Equipamento de Rampa. Dissertação de Mestrado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 2005.

ROWE, R. K.; HO, S. K. Determination of geotextile stress-strain characteristics using a wide strip test. In: INTERNATIONAL CONFERENCE ON EOTEXTILES, 3. 1986, Vienna. **Proceedings...** Vienna: 1986, pp. 885-890.

SARAMAGO R.P. Estudo da Influencia da Compactação no Comportamento de Muros de Solo Reforçado com a Utilização de Modelos Físicos. Tese de Doutorado, COOPE/UFRJ, Rio de Janeiro, 2002.

SAYÃO, A. S. F. J., Geossintéticos – Aplicação em Estabilidade de Taludes, IX ISL, Rio de Janeiro, 2004.

SAYÃO, A. S. F. J.; TEIXEIRA, M. L. Utilização de geossintéticos para reforço de aterros sobre solos moles. In: In: SIMPÓSIO BRASILEIRO DE APLICAÇÕES DE GEOSSINTÉTICOS, 2. 1995, São Paulo. **Anais...** São Paulo: 1995, pp. 169-180.

SIEIRA, A.C.C.F., Estudo Experimental dos Mecanismos de Interação Solo-Geogrelha, 360p. Tese de Doutorado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 2003.

TAVARES, A. C. Estudo da Resistência de Interfaces Solo-Geossintético. Dissertação de Mestrado, PUC-Rio, Departamento de Engenharia Civil, Rio de Janeiro, 2008 (em andamento).

VERTEMATTI, J.C. Manual Brasileiro de Geossintéticos, São Paulo, Ed. Edgard Blucher, 2004, 413p.

WASTI, Y. ÖZDÜZGÜN, Z.B. (2001) Geomembrane-geotextiles interface shear properties as determinaed by inclined board and direct shear box tests. **Geotextiles and Geomembranes** 19 pp-45-57.

Apêndice I. Configurações de Ensaio de Rampa

Características das configurações de ensaio de rampa

			Configuração de Ensaio				
Característi	cas	-	RP25Q-	RP50Q-	RP50R-	RP100Q-	RP100Q-
			10	10	10	10	10
Caixas	compri	mento (m)	0,70	0,80	1,20	1,20	1,20
de Ensaio	largura	(m)	0,50	0,70	0,50	1,00	1,00
Inferior	altura (m)	0,10	0,10	0,10	0,05	0,10
Caiyas	compri	mento (m)	0,50	0,70	1,00	1,00	1,00
de Ensaio	largura	(m)	0,50	0,70	0,50	1,00	1,00
Superior	altura (m)	0,10	0,10	0,10	0,05	0,10
Superior	área de	contato (m ²)	0,25	0,50	0,50	1,00	1,00
Velocidade d	le Ensaio	• (°/min)	1	1	1	1	1
Ângulo desloca carga ho	Ângulo	• (°)	sim	sim	sim	sim	sim
	desloca	imento (mm)	sim	sim	sim	sim	sim
	carga ho	orizontal (kN)	não	não	não	não	não
carga v		ertical (kN)	não	não	não	não	não
Sistema de		Direta	sim	sim	sim	sim	sim
Aplicação de	e Carga	Pendural	não	não	não	não	não
Confinante		Bolsa de Ar	não	não	não	não	não
Sistema de		Pesos	não	não	não	não	não
Cisalhante	Carga	Hidráulica	não	não	não	não	não
Faces de fi	rente e	V	sim	sim	sim	sim	sim
superior	Caixa	Ι	não	sim	não	sim	não

Tabela 66 - Resumo das características das configurações de ensaio de rampa

 $V = vertical e I = inclinada, no caso 30^{\circ}$.

Configuração de ensaio de Rampa RP25Q-10

Figura 265 - Configuração de ensaio de rampa RP25Q-10 (vista frontal).

Figura 266 - Configuração de ensaio de rampa RP25Q-10 (vista lateral).

Figura 267 - Configuração de ensaio de rampa RP25Q-10 (vista superior).

Configuração de ensaio de Rampa RP50Q-10

Figura 268 - Configuração de ensaio de rampa RP50Q-10 (vista frontal).

Figura 269 - Configuração de ensaio de rampa RP50Q-10 (vista lateral).

Figura 270 - Configuração de ensaio de rampa RP50Q-10 (vista superior).

Configuração de ensaio de Rampa RP50R-10

Figura 271 - Configuração de ensaio de rampa RP50R-10 (vista frontal).

Figura 272 - Configuração de ensaio de rampa RP50R-10 (vista lateral).

Figura 273 - Configuração de ensaio de rampa RP50R-10 (vista superior).

Figura 274 - Configuração de ensaio de rampa RP100Q-5 (vista frontal).

Figura 275 - Configuração de ensaio de rampa RP100Q-5 (vista lateral).

Figura 276 - Configuração de ensaio de rampa RP100Q-5 (vista superior).

Configuração de ensaio de Rampa RP100Q-10

Figura 277 - Configuração de ensaio de rampa RP100Q-10 (vista frontal).

Figura 278 - Configuração de ensaio de rampa RP100Q-10 (vista lateral).

Figura 279 - Configuração de ensaio de rampa RP100Q-10 (vista superior).

Apêndice II. Configurações de Ensaio de Cisalhamento Direto Inclinado

Características das configurações de ensaio de cisalhamento direto inclinado

Tabela 67 - Resumo das características das configurações de ensaio de cisalhamento direto inclinado

Características			Cont	Configuração de Ensaio		
Caracteristicas			CI25Q-10	CI50R-10	CI100Q-10	
Caixas	comprimento (m)		0,70	1,20	1,20	
de Ensaio	largura (m)		0,50	0,50	1,00	
Inferior	altura (m)		0,10	0,10	0,10	
Caivag	comprimento	o (m)	0,50	1,00	1,00	
de Enceio	largura (m)		0,50	0,50	1,00	
Superior	altura (m)		0,10	0,10	0,10	
Superior	área de contato (m ²)		0,25	0,50	1,00	
Velocidade de	Ensaio (mm/m	nin)	(*)	(*)	(*)	
	ângulo (°)		sim	sim	sim	
Medições	deslocamento (mm)		sim	sim	sim	
Wiedições	carga horizontal (kN)		não	não	não	
	carga vertical (kN)		não	não	não	
Sistema de A	nlicação de	Direta	sim	sim	sim	
Carga Confinai	nte	Pendural	não	não	não	
Curgu Commu	ite .	Bolsa de Ar	não	não	não	
Sistema de A	plicação de	Pesos	sim	sim	sim	
Carga Cisalhante		Hidráulica	não	não	não	
Faces de frente	e e fundo da	V	sim	sim	sim	
caixa superior		Ι	sim	sim	não	

(*) não se aplica, a este ensaio.

Configuração de ensaio de Cisalhamento Direto Inclinado CI25Q-10

Figura 280 - Configuração de ensaio de cisalhamento direto inclinado Cl25Q-10 (vista frontal).

Figura 281 - Configuração de ensaio de cisalhamento direto inclinado Cl25Q-10 (vista lateral).

Figura 282 - Configuração de ensaio de cisalhamento direto inclinado Cl25Q-10 (vista superior).

Configuração de ensaio de Cisalhamento Direto Inclinado CI50R-10

Figura 283 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10 (vista frontal).

Figura 284 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10 (vista lateral).

Figura 285 - Configuração de ensaio de cisalhamento direto inclinado CI50R-10 (vista superior).

Configuração de ensaio de Cisalhamento Direto Inclinado CI100Q-10

Figura 286 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10 (vista frontal).

Figura 287 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10 (vista lateral).

Figura 288 - Configuração de ensaio de cisalhamento direto inclinado CI100Q-10 (vista superior).

Apêndice III. Configurações de Ensaio de Cisalhamento Direto Convencional

Características das configurações de ensaio de cisalhamento direto convencional

Tabela 68 - Resumo das características das configurações de ensaio de cisalhamento direto inclinado

Características		Configuração de Ensaio					
Curactoristice		CC25Q-10	CC50Q-10	CC100Q-10	CC120R-30		
Caixas	comprimento (m)	0,70	0,80	1,20	1,20		
de Ensaio	largura (m)	0,50	0,70	1,00	1,00		
Inferior	altura (m)	0,10	0,10	0,10	0,30		
Caivas	comprimento (m)	0,50	0,70	1,00	1,20		
de Ensaio	largura (m)	0,50	0,70	1,00	1,00		
Superior	altura (m)	0,10	0,70	0,10	0,30		
Superior	área de contato (m ²)	0,25	0,50	1,00	1,20		
Velocidade de Ensaio (mm/min)		(*)	(*)	(*)	(*)		
	ângulo (°)	não	não	não	não		
Medições	deslocamento (mm)	sim	sim	sim	sim		
wiedições	carga horizontal(kN)	sim	sim	sim	sim		
	carga vertical (kN)	sim	sim	não	não		
Sistema de	Direta	sim	sim	sim	sim		
Aplicação	Pendural	sim	sim	não	não		
de Carga			5				
Confinante	Bolsa de Ar	não	não	não	sim		
Sistema o	de Pesos	não	não	não	não		
Aplicação	de						
Carga Cisall	hante Hidráulica	sim	sim	sim	sim		

(*) depende do tipo de solo utilizado no ensaio.

Configuração de ensaio de Cisalhamento Direto Convencional CC25Q-10

Figura 289 - Configuração de ensaio de cisalhamento direto convencional CC25Q-10 (vista frontal).

Figura 290 - Configuração de ensaio de cisalhamento direto convencional CC25Q-10 (vista lateral).

Figura 291 - Configuração de ensaio de cisalhamento direto convencional CC25Q-10 (vista superior).

Configuração de ensaio de Cisalhamento Direto Convencional CC50Q-10

Figura 292 - Configuração de ensaio de cisalhamento direto convencional CC50Q-10 (vista frontal).

Figura 293 - Vista lateral da configuração de cisalhamento direto convencional CC50Q-10.

Figura 294 - Vista superior da configuração de cisalhamento direto convencional CC50Q-10.

Configuração de ensaio de Cisalhamento Direto Convencional CC100Q-10

Figura 295 - Vista frontal da configuração de cisalhamento direto convencional CC100Q-10.

Figura 296 - Vista lateral da configuração de cisalhamento direto convencional CC50Q-10.

Figura 297 - Vista superior da configuração de cisalhamento direto convencional CC50Q-10.

Configuração de ensaio de Cisalhamento Direto Convencional CC120R-30

Figura 298 - Vista frontal da configuração de cisalhamento direto convencional CC120R-30.

Figura 299 - Vista lateral da configuração de cisalhamento direto convencional CC120R-30.

Figura 300 - Vista superior da configuração de cisalhamento direto convencional CC120R-30.

Apêndice IV. Configurações de Ensaio de Arrancamento

Características das configurações de ensaio de arrancamento

Características		Configuração de Ensaio
		AR120R-30
	comprimento (m)	1,20
Caixas de Ensaio Inferior	largura (m)	1,00
	altura (m)	0,30
	comprimento (m)	1,20
Caivas de Ensaio Superior	largura (m)	1,00
Caixas de Ensaio Superior	altura (m)	0,30
	área de contato (m ²)	1,20
Velocidade de Ensaio (mm/m	nin)	baixa, da ordem de 1mm/min
	ângulo (°)	não
Medições	deslocamento (mm)	sim
Wiedições	carga horizontal (kN)	sim
	carga vertical (kN)	sim
Sistema de Anlicação de	Direta	sim
Carga Confinante	Pendural	não
Curga Commande	Bolsa de Ar	sim
Sistema de Aplicação de	Pesos	não
Carga Cisalhante	Hidráulica	sim

Tabela 69 - Resumo das características da configuração de ensaio de arrancamento

Figura 301 - Configuração de ensaio de arrancamento ArG-1 (vista frontal).

Figura 302 - Configuração de ensaio de arrancamento ArG-1 (vista lateral).

Figura 303 - Configuração de ensaio de arrancamento ArG-1 (vista superior).

Apêndice V. Limitações de Uso

Limites de utilização do conjunto de caixas de ensaio 1

configuraç	H (cm) 5,0		
solo			65,8
solo	tampa		62,4
solo	tampa	1 placa	59,1
solo	tampa	2 placas	56,0
solo	tampa	3 placas	53,2

Figura 304 - Ângulo crítico ao tombamento - conjunto 1

configuraçã	ão do sistema de co	nfinamento	H (cm) 2,5	H (cm) 5,0	H (cm) 7,5	H (cm) 10
solo			36,5	33,3	31,1	28,9
solo	tampa		33,6	31,2	29,1	27,0
solo	tampa	1 placa	31,2	29,1	27,1	25,4
solo	tampa	2 placas	29,0	27,1	25,4	24,0
solo	tampa	3 placas	27,1	25,4	24,0	22,6
solo	tampa	4 placas	25,4	24,0	22,6	21,3
solo	tampa	5 placas	24,0	22,6	21,3	20,2

Limites de utilização do conjunto de caixas de ensaio 2

Figura 305 - Ângulo crítico ao tombamento - conjunto 2

configuração do sistema de confinamento		H (cm) 2,5	H (cm) 5,0	H (cm) 7,5	H (cm) 10	
solo			46,2	43,1	40,5	38,0
solo	tampa		43,1	40,5	38,0	35,9
solo	tampa	1 placa	40,5	38,0	35,9	33,8
solo	tampa	2 placas	38,0	35,9	33,8	32,0
solo	tampa	3 placas	35,9	33,8	32,0	30,4

Limites de utilização do conjunto de caixas de ensaio 3

Figura 306 - Ângulo crítico ao tombamento - conjunto 3

configuraç	ção do sistema de co	onfinamento	H (cm) 2,5	H (cm) 5,0	H (cm) 7,5	H (cm) 10
solo			56,0	53,3	50,6	48,1
solo	tampa		53,3	50,6	48,1	45,8
solo	tampa	1 placa	50,6	48,1	45,8	43,7
solo	tampa	2 placas	48,1	45,8	43,7	41,7
solo	tampa	3 placas	45,8	43,7	41,7	39,9

Figura 307 - Ângulo crítico ao tombamento - conjunto 4

configuração do sistema de confinamento		H (cm) 2,5	H (cm) 5,0	H (cm) 7,5	H (cm) 10	
solo			56,0	53,3	50,6	48,1
solo	tampa		53,3	50,6	48,1	45,8
solo	tampa	1 placa	50,6	48,1	45,8	43,7
solo	tampa	2 placas	48,1	45,8	43,7	41,7
solo	tampa	3 placas	45,8	43,7	41,7	39,9

Limites de utilização do conjunto de caixas de ensaio 5

Figura 308 - Ângulo crítico ao tombamento - conjunto 5

Materiais Utilizados

No programa experimental foram utilizados um solo silto-argiloso e três tipos distintos de materiais geossintéticos: uma geogrelha de poliester, um geotêxtil não-tecido) e uma geomembrana de PVC.

O solo é proveniente da obra de construção de diques de contenção de rejeitos em Poços de Caldas, Minas Gerais (Becker, 2003). Foi caracterizado como um solo silto-argiloso que apresenta mais de 70% dos seus grãos passando pela peneira 200 (0,075mm), conforme indica a Figura 309.

A Tabela 70 apresenta as principais características físicas do solo estudado, assim como as respectivas normas utilizadas nos ensaios de caracterização.

Características	Valor	Norma
Limite de Liquidez (LL)	55,3%	NBR 6459
Limite de Plasticidade (LP)	37,8%	NBR 7180
Índice de Plasticidade (IP)	17,5%	NBR 7180
Peso Específico Real dos Grãos (s)	28,0kN/m3	NBR 6508
Peso Específico Seco Máximo (d)	13,6kN/m3	NBR 7182
Teor de Umidade Ótimo (ot)	31,1%	NBR 7182
Coeficiente de Uniformidade (Cu)	3,7	NBR 7181

Tabela 70 - Características físicas do solo silto-argiloso

Figura 309 - Curva granulométrica do solo silto-argiloso.

Na Figura 310 é apresentada a envoltória de resistência de um conjunto de ensaios de cisalhamento direto com o solo silto-argiloso. Os corpos de prova foram obtidos de um bloco indeformado, retirado de um aterro experimental montado ao lado dos diques de rejeitos. O aterro foi compactado com umidade 2% acima da ótima. Os ensaios foram executados na condição de umidade natural, utilizando-se corpos de prova quadrados de 10,6cm de aresta por 2,0cm de altura.

Os parâmetros de resistência obtidos da envoltória, mostrados na Figura 4.2, são 43,8° de ângulo de atrito e 12,3kPa de coesão.

Os geossintéticos são o geotêxtil utilizado no programa experimental corresponde ao Geofort G300 (Figura 311a). É um geotêxtil não tecido agulhado de filamentos de polipropileno, fabricado pela Ober S.A. Indústria e Comércio. A Tabela 71 apresenta as principais características do material segundo o catálogo do fabricante.

Figura 310 - Envoltória de resistência obtida dos ensaios de cisalhamento direto (Becker, 2003).

A geogrelha utilizada foi a Fortrac 55/25-20/30 (Figura 311b), constituída de poliéster de alta tenacidade revestida com PVC, fabricada pela Huesker. A Tabela 72 apresenta as principais características do material segundo o catálogo do fabricante.

A geomembrana utilizada foi a CipaGeo (Figura 311c), de PVC, texturizada em uma das faces, fabricada pela Cipatex. A Tabela 73 apresenta as principais características do material segundo o catálogo do fabricante.

Tabela 71 - Características do geotêxtil Geofort G300 (Ober, 1999)

Característica	Valor	Norma
Gramatura	300g/m ²	NBR 12592
Espessura Nominal	2,8mm	NBR 12569
Abertura de Filtração	110mm	AFNOR G 38017
Porosidade	90%	DIN 53855
Permeabilidade Normal	0,4 cm/s	AFNOR G 38016
Permissividade	1,4 s ⁻¹	AFNOR G 38016
Resistência à Tração (carga distribuída)	22kN/m	NBR 12824
Alongamento na Ruptura	60%	NBR 12824
Resistência ao Puncionamento	3,8kN	NBR 13359
Resistência ao Rasgo Trapezoidal	510N	ASTM D 4533
Resistência ao Estouro	3MPa	STM D 3786

Tabela 72 - Características da geogrelha Fortrac 55/25-20/30 (Huesker, 2002)

Característica		Valor	Norma
Abertura		20mm x 30mm	
Resistência à Tração	Longitudinal	55 kN/m	NBR 12824
	Transversal	25 kN/m	NBR 12824
Alongamento na Ruptura (Longitudinal)		5%	NBR 12824

Tabela 73 - Características da geomembrana CipaGeo (Cipatex, 2003)

Característica	Valor	Norma
Densidade	1200kg/m ³	ASTM D 792A
Gramatura	960g/m ²	NBR 12592
Espessura	0,8m	ASTM D 1593
Resistência ao Rasgo	35N	ASTM D1004
Resistência à Tração	10N/mm	ASTM D882
Alongamento na Ruptura	200%	ASTM D882
Módulo de Elasticidade	8MPa	ASTM D882

Figura 311 - Geossintéticos ensaiados: (a) Geotêxtil, (b) Geogrelha e (c) Geomembrana.

Materiais Utilizados

No programa experimental foram utilizados dois solos não-coesivos e dois tipos distintos de materiais geossintéticos: uma geogrelha de poliester e uma geomembrana de PVC.

Solos

Um dos objetivos da pesquisa é a calibração do equipamento. Para isso, foram utilizados dois solos distintos nas campanhas de ensaio, uma areia e uma brita, com curvas granulométricas diferentes no que diz respeito à dimensão das partículas para avaliar seu desempenho (Figura 312).

Figura 312 - Curva granulométrica da areia e da brita.

A areia é proveniente da praia de Ipanema (Figura 313). É uma areia uniforme de quartzo, com partículas de dimensões que variam entre 0,074 e 2,38mm. Os valores de peso específico mínimo e máximo são de 15,47 e 17,04kN/m³, respectivamente.

O segundo material é um pedregulho uniforme, proveniente de britagem de rocha granito-gnáissica que tem partículas com dimensões variando de 4,67 a 19,1mm (Figura 313). Os valores de peso específico mínimo e máximo são de 13,39 e 15,26kN/m³, respectivamente.

Nas Tabelas 74 e 75 encontram-se algumas das características dos dois materiais, como os diâmetros máximo ($D_{máx}$) e mínimo ($D_{mín}$), os diâmetros D_{10} , D_{30} e D_{60} , os coeficientes de uniformidade (C_u) e de curvatura (C_c) e os pesos específicos máximo ($\gamma_{máx}$) e mínimo ($\gamma_{mín}$).

Figura 313 - Amostras representativas da areia (esquerda) e brita (direita).

Solo	D _{mín} (mm)	D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	D _{máx} (mm)	C _u	C _c
areia	0,08	0,31	0,45	0,60	2,38	1,94	1,09
brita	4,67	10,5	14,0	16,3	19,1	1,55	1,15

Tabela 74 - Características granulométricas da areia e da brita

Tabela 75 - Características físicas da areia e da brita

Solo	$\gamma_{\rm s}$ (kN/m ³)	γ _{máx} (kN/m ³)	$\gamma_{\rm Dr}$ (kN/m ³)	γ _{mín} (kN/m³)	e _{mín}	e _{Dr}	e _{máx}
areia	26,09	17,04	15,69	15,47	0,53	0,66	0,69
brita	26,46	15,26	14,14	13,80	0,76		1,01

A seguir são apresentadas as envoltórias de resistência da areia para os estados fofo e denso. Não foi possível obter os parâmetros da brito por não dispor de um equipamento com dimensões adequadas.

Figura 314 - Envoltórias de ruptura da areia.

Geossintéticos

Pala avaliar o desempenho do equipamento foram utilizados 2 geossintéticos: uma geomembrana de PVC e uma geogrelha.

A geomembrana de PVC foi a CipaGeo, texturizada em uma das faces, fabricada pela Cipatex (Figura 315). A Tabela 76 apresenta as principais características do material segundo o catálogo do fabricante.

Tabela 76 - Características da geomembrana	CipaGeo	(Cipatex,	2003)
--	---------	-----------	-------

ŭ	• • • •	,
Característica	Valor	Norma
Densidade	1200kg/m ³	ASTM D 792A
Gramatura	960g/m ²	NBR 12592
Espessura	0,8m	ASTM D 1593
Resistência ao Rasgo	35N	ASTM D1004
Resistência à Tração	10N/mm	ASTM D882
Alongamento na Ruptura	200%	ASTM D882
Módulo de Elasticidade	8MPa	ASTM D882

Apêndice VII Rezende (2005)

A geogrelha empregada foi a Fortrac 35/25-20/30 fabricada pela Huesker (Figura 315). Ela é constituída de poliálcool de vinila (PVA) e suas características,s egundo o fabricante, são apresentadas na Tabela 77.

Tabela 77 - Característica da Geogrelha Fortrac 35/25-20/30 (Huesker, 2003)

Propriedade		Valor	Método de Ensaio
Massa por Unidade de Área		270g/m ²	ASTM D-5261
Abertura		20 x 30mm	~
Porcentagem de Área Aberta		70 %	~
Resistência à Tração	Longitudinal	35kN/m	ASTM D-6637
Transversal		25kN/m	ASTM D-6637
Alongamento na Ruptura (longitudinal)		4-6%	ASTM D-6637

Figura 315 - Geossintéticos ensaiados: (a) Geomembrana, (b) Geogrelha.

Materiais da Pesquisa

No programa experimental foram utilizados dois solos, uma areia e um pedregulho, e quatro tipos distintos de materiais geossintéticos: uma geogrelha de poliéster, uma geogrelha de poliéster tridimensional, uma geomembra de PVC e uma geomembrana de PEAD.

Solos

Um dos objetivos da pesquisa é a calibração do equipamento. Para isso, foram utilizados dois solos distintos nas campanhas de ensaio, uma areia e uma brita, com curvas granulométricas diferentes no que diz respeito à dimensão das partículas para avaliar seu desempenho (Figura 316).

Figura 316 - Curvas granulométricas da areia e da brita.

A areia é proveniente da praia de Ipanema. É uma areia uniforme de quartzo, com partículas de dimensões que variam entre 0,074 e 2,38mm. Os valores de peso específico mínimo e máximo são de 15,47 e 17,04kN/m³, respectivamente.

O segundo material é um pedregulho uniforme, proveniente de britagem de rocha granito-gnáissica que tem partículas com dimensões variando de 0,42 a 9,25mm. Os valores de peso específico mínimo e máximo são de 13,80 e 16,42kN/m³, respectivamente.

A densidade relativa utilizada no programa experimental, para os dois materiais, foi de 15% o que equivale a pesos específicos de 15,69kN/m³, areia, e 14,14kN/m³, brita.

Nas Tabelas 78 e 79 encontram-se algumas das características dos dois materiais, como os diâmetros máximo ($D_{máx}$) e mínimo ($D_{mín}$), os diâmetros D_{10} , D_{30} e D_{60} , os coeficientes de uniformidade (C_u) e de curvatura (C_c) e os pesos específicos máximo ($\gamma_{máx}$) e mínimo ($\gamma_{mín}$).

Tabela 78 - Características granulométricas da areia e da brita

Solo	D _{mín} (mm)	D ₁₀ (mm)	D ₃₀ (mm)	D ₆₀ (mm)	D _{máx} (mm)	Cu	C _c
areia	0,08	0,31	0,45	0,60	2,38	1,94	1,09
brita	0,42	2,85	5,60	7,00	9,53	2,46	1,57

Tabela 79 - Características físicas da areia e da brita

Solo	γ_{s} (kN/m ³)	γ _{máx} (kN/m ³)	γ _{Dr-15%} (kN/m ³)	γ _{mín} (kN/m ³)	e _{mín}	e _{Dr-15%}	e _{máx}
areia	26,09	17,04	15,69	15,47	0,53	0,66	0,69
brita	26,46	16,42	14,14	13,80	0,61	0,87	0,92

Geossintéticos

Pala avaliar o desempenho do equipamento foram utilizados 3 geossintéticos: uma geomembrana de PVC, uma geomembrana de PEAD, e uma geogrelha.

A geomembrana de PVC foi a CipaGeo, texturizada em uma das faces, fabricada pela Cipatex (Figura 317a). A Tabela 80 apresenta as principais características do material segundo o catálogo do fabricante.

A segunda geomembrana, de PEAD, utilizada foi a Polimanta fabricada pela Engepol (Figura 317b). Ela tem 1mm de espessura e possui as duas faces lisas. A Tabela 81 apresenta as principais características do material segundo o fabricante.

Propriedade	Valor	Método de Ensaio
Densidade	1200kg/m3	ASTM D 792A
Gramatura	960g/m2	NBR 12592
Espessura	0,8mm	ASTM D 1593
Resistência ao Rasgo	35N	ASTM D 1004
Resistência a Tração	10N/mm	ASTM D 882
Alongamento na Ruptura	200%	ASTM D 882
Módulo de Elasticidade	8MPa	ASTM D 882

Tabela 80 - Característica da Geomembrana CipaGeo (Cipatex, 2003)

Tabela 81 - Característica da Geomembrana Polimanta (Engepol, 2007)

	Propriedade	Valor	Método de Ensaio
Espessura N	ominal	1mm	ASTM D 5199
Densidade		\geq 0,94g/m ³	ASTM D 792
Resistência	no Escoamento	$\geq 15 kN/m$	
a . Tração .	na Ruptura	$\geq 27 k N/m$	
	Alongamento no Escoamento	$\geq 12\%$	
	Alongamento na Ruptura	$\geq 700\%$	-
Resistência a	ao Rasgo	≥125N	ASTM D 1004
Resistência ao Puncionamento		≥ 320N	ASTM D 4833
Teor de Neg	ro de Fumo	2 - 3	ASTM D 1603
Dispersão de	e Negro de Fumo	Nota	ASTM D 5596

Nota: Dispersão de Negro de Fumo para 10 diferentes amostras: 9 nas categorias 1 e 2 e 1 na categoria 3.

Apêndice VII Tavares (2008)

A geogrelha empregada foi a Fortrac 35/25-20/30 fabricada pela Huesker (Figura 317c). Ela é constituída de poliálcool de vinila (PVA) e suas características,s egundo o fabricante, são apresentadas na Tabela 82.

Tabela 82 - Característica da	Geogrelha Fortrac 3	35/25-20/30 (Huesker	, 2003)
-------------------------------	---------------------	----------------------	---------

Propriedade		Valor	Método de Ensaio
Massa por Unidade de Área		270g/m ²	ASTM D-5261
Abertura		20 x 30mm	~
Porcentagem de Área Aberta		70 %	~
Resistência à Tracão	Longitudinal	35kN/m	ASTM D-6637
Transversal		25kN/m	ASTM D-6637
Alongamento na Ruptura (longitudinal)		4-6%	ASTM D-6637

(a) Geomembrana Cipageo

(c) Geogrelha Fortrac 35/25-20/30 Figura 317 - Geossintéticos ensaiados.

(b) Geomembrana Polimanta

Apêndice IX. Análise de Distribuição de Tensões

Figura 318 -	Análise de	distribuição (de tensões	para o conju	nto de caixas	de ensaio 1.
0		د				

Figura 319 - Análise de distribuição de tensões para o conjunto de caixas de ensaio 2.

Figura 320 - Análise de distribuição de tensões para o conjunto de caixas de ensaio 3.

Figura 321 - Análise de distribuição de tensões para o conjunto de caixas de ensaio 4.

Figura 322 - Análise de distribuição de tensões para o conjunto de caixas de ensaio 5.

Anexo I. Critérios de Ruptura

Sobre os critérios de ruptura normalmente utilizados empregados para solos Bomfim (2001), escreveu (Figura 307):

(i) Critério da tensão desviadora de pico (1): O critério de máxima tensão desviadora, ou pico da curva tensão-deformação é um dos mais tradicionais associados com a ruptura de corpos de prova. No entanto, nem sempre a curva tensão-deformação apresenta pico, e outro critério de ruptura deve ser estabelecido.

(ii) Critério da máxima razão das tensões principais (2): O critério de máxima razão entre as tensões principais é particularmente útil para argilas nas quais a tensão desviadora continua a aumentar com o aumento das deformações.
 Possibilita a avaliação da não linearidade da envoltória de ruptura.

(iii) Critério da deformação limite (3): Para solos nos quais grandes deformações são necessárias para mobilizar a resistência cisalhante, uma condição de deformação limite pode ser mais apropriada do que as anteriores.

(iv) Critério do estado crítico (4): Para argilas, o estado crítico é a condição na qual o corpo de prova continua a deformar em volume constante, sob constante tensão efetiva. O conceito de estado crítico representa um comportamento idealizado para argilas remoldadas. Argilas sobreadensadas, principalmente, não atendem a este conceito.

(v) Critério do estado residual (5): Se forem impostos grandes deslocamentos ao corpo de prova, sob tensão normal contínua, então a resistência ao cisalhamento vai continuamente decrescer até atingir um valor constante. Este valor representa a condição residual.

Figura 323 - Critérios de ruptura para solos (Bomfim, 2001).

PUC-Rio - Certificação Digital Nº 0321284/CA